Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.

Identifieur interne : 001989 ( Main/Exploration ); précédent : 001988; suivant : 001990

Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.

Auteurs : Paula G. Bertram [États-Unis] ; Jae H. Choi ; John Carvalho ; Ting-Fung Chan ; Wandong Ai ; X F Steven Zheng

Source :

RBID : pubmed:11809814

Descripteurs français

English descriptors

Abstract

Carbon and nitrogen are two basic nutrient sources for cellular organisms. They supply precursors for energy metabolism and metabolic biosynthesis. In the yeast Saccharomyces cerevisiae, distinct sensing and signaling pathways have been described that regulate gene expression in response to the quality of carbon and nitrogen sources, respectively. Gln3 is a GATA-type transcription factor of nitrogen catabolite-repressible (NCR) genes. Previous observations indicate that the quality of nitrogen sources controls the phosphorylation and cytoplasmic retention of Gln3 via the target of rapamycin (TOR) protein. In this study, we show that glucose also regulates Gln3 phosphorylation and subcellular localization, which is mediated by Snf1, the yeast homolog of AMP-dependent protein kinase and a cytoplasmic glucose sensor. Our data show that glucose and nitrogen signaling pathways converge onto Gln3, which may be critical for both nutrient sensing and starvation responses.

DOI: 10.1128/mcb.22.4.1246-1252.2002
PubMed: 11809814
PubMed Central: PMC134645


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.</title>
<author>
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Jae H" sort="Choi, Jae H" uniqKey="Choi J" first="Jae H" last="Choi">Jae H. Choi</name>
</author>
<author>
<name sortKey="Carvalho, John" sort="Carvalho, John" uniqKey="Carvalho J" first="John" last="Carvalho">John Carvalho</name>
</author>
<author>
<name sortKey="Chan, Ting Fung" sort="Chan, Ting Fung" uniqKey="Chan T" first="Ting-Fung" last="Chan">Ting-Fung Chan</name>
</author>
<author>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11809814</idno>
<idno type="pmid">11809814</idno>
<idno type="pmc">PMC134645</idno>
<idno type="doi">10.1128/mcb.22.4.1246-1252.2002</idno>
<idno type="wicri:Area/Main/Corpus">001993</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001993</idno>
<idno type="wicri:Area/Main/Curation">001993</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001993</idno>
<idno type="wicri:Area/Main/Exploration">001993</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.</title>
<author>
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Jae H" sort="Choi, Jae H" uniqKey="Choi J" first="Jae H" last="Choi">Jae H. Choi</name>
</author>
<author>
<name sortKey="Carvalho, John" sort="Carvalho, John" uniqKey="Carvalho J" first="John" last="Carvalho">John Carvalho</name>
</author>
<author>
<name sortKey="Chan, Ting Fung" sort="Chan, Ting Fung" uniqKey="Chan T" first="Ting-Fung" last="Chan">Ting-Fung Chan</name>
</author>
<author>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Proteins (MeSH)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Repressor Proteins (MeSH)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Transcription Factors (metabolism)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de répression (MeSH)</term>
<term>Protéines du cycle cellulaire (MeSH)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Techniques de double hybride (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Fungal Proteins</term>
<term>Glucose</term>
<term>Nitrogen</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Facteurs de transcription</term>
<term>Glucose</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Reporter</term>
<term>Phosphorylation</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes rapporteurs</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphorylation</term>
<term>Protéines de répression</term>
<term>Protéines du cycle cellulaire</term>
<term>Techniques de double hybride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon and nitrogen are two basic nutrient sources for cellular organisms. They supply precursors for energy metabolism and metabolic biosynthesis. In the yeast Saccharomyces cerevisiae, distinct sensing and signaling pathways have been described that regulate gene expression in response to the quality of carbon and nitrogen sources, respectively. Gln3 is a GATA-type transcription factor of nitrogen catabolite-repressible (NCR) genes. Previous observations indicate that the quality of nitrogen sources controls the phosphorylation and cytoplasmic retention of Gln3 via the target of rapamycin (TOR) protein. In this study, we show that glucose also regulates Gln3 phosphorylation and subcellular localization, which is mediated by Snf1, the yeast homolog of AMP-dependent protein kinase and a cytoplasmic glucose sensor. Our data show that glucose and nitrogen signaling pathways converge onto Gln3, which may be critical for both nutrient sensing and starvation responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11809814</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>03</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.</ArticleTitle>
<Pagination>
<MedlinePgn>1246-52</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Carbon and nitrogen are two basic nutrient sources for cellular organisms. They supply precursors for energy metabolism and metabolic biosynthesis. In the yeast Saccharomyces cerevisiae, distinct sensing and signaling pathways have been described that regulate gene expression in response to the quality of carbon and nitrogen sources, respectively. Gln3 is a GATA-type transcription factor of nitrogen catabolite-repressible (NCR) genes. Previous observations indicate that the quality of nitrogen sources controls the phosphorylation and cytoplasmic retention of Gln3 via the target of rapamycin (TOR) protein. In this study, we show that glucose also regulates Gln3 phosphorylation and subcellular localization, which is mediated by Snf1, the yeast homolog of AMP-dependent protein kinase and a cytoplasmic glucose sensor. Our data show that glucose and nitrogen signaling pathways converge onto Gln3, which may be critical for both nutrient sensing and starvation responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bertram</LastName>
<ForeName>Paula G</ForeName>
<Initials>PG</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Jae H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carvalho</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Ting-Fung</ForeName>
<Initials>TF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ai</LastName>
<ForeName>Wandong</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>X F Steven</ForeName>
<Initials>XF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01CA77668</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C071570">SNF1-related protein kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="Y">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="Y">Repressor Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11809814</ArticleId>
<ArticleId IdType="pmc">PMC134645</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.22.4.1246-1252.2002</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Sep;11(9):4455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1652057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Apr 8;141(1):133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Mar;16(3):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Oct;16(10):5536-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Dec;7(12):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Feb;27(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Feb 15;252(1):162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9523726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:821-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Nov;18(11):6273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 19;8(23):1259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9822578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Feb;19(2):989-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Feb;9(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1999 May;6(5):R129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1999 Apr;2(2):202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):25359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):32136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Sep 12;233(4769):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3526554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 May 25;18(10):3091-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2190191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Sep;10(9):4757-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2201902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Apr 22;264(5158):566-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7909170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
<settlement>
<li>Saint-Louis (Missouri)</li>
</settlement>
<orgName>
<li>École de médecine (Université Washington de Saint-Louis)</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
<name sortKey="Carvalho, John" sort="Carvalho, John" uniqKey="Carvalho J" first="John" last="Carvalho">John Carvalho</name>
<name sortKey="Chan, Ting Fung" sort="Chan, Ting Fung" uniqKey="Chan T" first="Ting-Fung" last="Chan">Ting-Fung Chan</name>
<name sortKey="Choi, Jae H" sort="Choi, Jae H" uniqKey="Choi J" first="Jae H" last="Choi">Jae H. Choi</name>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</noCountry>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11809814
   |texte=   Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11809814" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020